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SUMMARY	  

MeshKit uses a graph-based design for coding all its meshing algorithms, which 
includes the Reactor Geometry (and mesh) Generation (RGG) algorithms. This report 
highlights the developmental updates of all the algorithms, results and future work. Parallel 
versions of algorithms, documentation and performance results are reported. RGG GUI design 
was updated to incorporate new features requested by the users; boundary layer generation 
and parallel RGG support were added to the GUI. Key contributions to the release, upgrade 
and maintenance of other SIGMA1 libraries (CGM and MOAB) were made. Several 
fundamental meshing algorithms for creating a robust parallel meshing pipeline in MeshKit 
are under development. Results and current status of automated, open-source and high quality 
nuclear reactor assembly mesh generation algorithms such as trimesher, quadmesher, interval 
matching and multi-sweeper are reported.  
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1 Introduction	  

We describe in this report the progress made over the past year in incorporating new 
and state-of-art research algorithms in MeshKit focusing on the major goal of creating nuclear 
reactor core models. The focus of development was centered on releasing stable version of 
Reactor Geometry (and mesh) Generator (RGG) GUI with support for boundary layers and 
parallel reactor core model creation [1]. Considerable efforts were made for development of 
SIGMA libraries CGM and MOAB as they constitute the geometry and mesh database for 
MeshKit respectively. New models for Westinghouse PWR reactor core was also created in 
serial and parallel, details and results of the model are available in our paper [2]. 

Nuclear reactor assembly mesh generation algorithm requires development of several 
key algorithms that must work together to create an automated meshing tool. Integration of 
existing triangle meshing packages NetGen and GRUMMP is in-progress. A new facet-mesh 
algorithm has been integrated and documented in the doxygen-based documentation 
framework of MeshKit. Multi-sweep algorithms were developed and compared with CUBIT, 
integration of this algorithm with native quadmesher and interval assignment is in-progress.  
Section 2 reports the RGG enhancements, parallel CoreGen and fixes along with development 
status of open-source reactor mesh generation tool (AssyMesher).  Section 3 lists the 
development efforts and new releases of geometry package CGM. Section 4 highlights the 
triangle mesher status; Section 5 gives the summary and results of facet-based mesh 
generation algorithm. Section 6 briefly describes and shows results for the multi-sweeper 
algorithm and finally, Section 7 lists the conclusion and future work. 

2 RGG	  Enhancements	  and	  Reactor	  Assembly	  Mesh	  Generation	  (AssyMesher)	  

PostBL(Post mesh Boundary Layer) [3] MeshOp (mesh operation), which generates 
boundary layer meshes for an already existing mesh model was integrate with RGG GUI 
application. Figure 1 shows a di-graph based representation for meshing of reactor assembly, 
Stage 1 (AssyGen) and stage 2 (Meshing) of the three stage RGG workflow [4] (third stage is 
CoreGen) are shown in Figure 2, where meshing is handled by the AssyMesher MeshOp in 
MeshKit. AssyMesher is a essentially a combination of state-of-art (open-source) and native 
algorithms in MeshKit with added automation and knowledge of AssyGen geometry. It is 
designed to use different meshing algorithms as per the specified MeshKit configuration. 
CAMAL [5] library (closed source) is currently used and functional for generation of 
hexahedral meshes on AssyGen generated Open-Cascade geometries. Section 4 and Section 6 
highlights the development efforts of open-source algorithms that would be serve as graph 
node of the AssyMesher MeshOp. Interval assignment algorithms developed in MeshKit 
would be tied to all these algorithms along with automatic scheme selection for minimal user 
intervention and intelligent sizing specification. Fully open-source AssyMesher MeshOp is 
under development. 

 
Figure	  1.	  User	  specified	  digraph	  for	  creating	  reactor	  assembly	  mesh	  with	  

boundary	  layers.	  
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Figure	  2	  In	  stage	  1	  AssyGen	  generates	  a	  geometry	  based	  on	  input	  file.	  In	  stage	  2	  AssyMesher	  reads	  

the	  geometry	  and	  creates	  the	  assembly	  mesh.	  

All RGG algorithms: AssyGen, AssyMesher and CoreGen adhere to the digraph-based 
design in MeshKit. A simple graph constructed by the user for running CoreGen is shown in 
Figure 3(a).  In the setup traversal phase, CoreGen adds two nodes, “CopyMesh” and 
“MergeMesh” (shown in the box, Figure 3(b)), to the graph. In the execute phase, based on a 
user specified input file, the assembly meshes are copy/moved and then merged. After 
populating the material and boundary conditions for the core model, CoreGen saves the 
desired core model. Note that in serial CoreGen, CopyMesh does the copy/move of all the 
assemblies forming the reactor core model. Consider the graph for the same reactor-modeling 
problem with two processors in Figure 3(c). All the operations—copy/move, merge, 
boundary/material conditions, setup, and mesh saving—are parallelized, thereby making 
CoreGen MeshOp truly parallel and enabling creation of large reactor models.  

 
(a) 

 
(b) 

 
(c) 

Figure	  3.	  (a)	  CoreGen	  MeshOp	  di-‐graph.	  (b)	  Internal	  nodes	  created	  during	  setup-‐phase	  of	  CoreGen,	  
shown	  in	  box.	  (c)	  2	  processor	  digraph	  for	  CoreGen	  MeshOp.	  

The parallel graph setup mentioned below demonstrates the creation of reactor core 
mesh from scratch in one program. In figure 4 four meshing operations (AssyGen, Meshing, 
PostBL and CoreGen) specified by the user, all form a part of the graph, when running the 
problem on three processors. A text-based input file provides input parameters for AssyGen, 
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PostBL and CoreGen. Mesh sizes for geometries created by AssyGen are prescribed using a 
“sizing function” in the program. The setup phase of CoreGen and Meshing creates more 
graph nodes that are not shown here. A barrier is required after creation of boundary layers on 
all the assembly meshes, since CoreGen loads all the assembly meshes that form the core 
model. Work on open-source AssyGen “Meshing2” or AssyMesher operation is currently in 
progress. It is a combination of QuadMesh and ExtrudeMesh operation or a CUBIT mesh 
generation task. 

 
Figure.	  4.	  User	  specified	  di-‐graph	  with	  3	  processors	  and	  4	  different	  mesh	  operations	  to	  create	  a	  

reactor	  core	  mesh.	  

Uniform mesh refinement techniques developed in MOAB [6], were utilized in the 
CoreGen program. After the generation of the core mesh in parallel the resulting mesh on 
each processor was uniformly refined to levels specified by the user. We studied the 
performance of our parallel algorithms and I/O routines for rectangular reactor core models. 
In our weak scalability studies, assemblies were generated with approximately 7500 hexes 
and subsequently refined two time times resulting in 60K and 480K hexes at each level. The 
shared entity resolution algorithm used was a geometric proximity based vertex-merge 
algorithm for both core assemblies and after refinement. We obtained good scaling for this 
algorithm for upto 1K cores. On the other hand, the parallel IO deteriorated as the number of 
processors increase (Figure 5). This work is currently in progress and we are investigating the 
results and also performing new runs for hexagonal reactor cores.  

 
Figure	  5.	  Runtime	  and	  efficiency	  plots	  for	  CoreGen,	  UMR	  and	  IO.	  	  
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3 Computational	  Geometry	  Model	  

The geometry modeling engine that MeshKit uses to represent the geometry that it will 
mesh is the computational geometry model (CGM).  CGM can be built on top of several 
different geometry libraries, including the CUBIT library from Sandia National Laboratory, 
which requires a license, and the open source OpenCascade (OCC) library. Historically, the 
development of CGM and CUBIT were tied together very closely, and CGM works best when 
it is built with the CUBIT library. CGM does not work as well when it is built with the 
OpenCascade library.  However, there is growing interest in having a robust completely open 
source build of MeshKit, so work continues to improve the behavior of CGM when it is built 
with OpenCascade. 

In fiscal year 2015, several lines of software development involving CGM built with 
the OpenCascade library hit a roadblock because of a bug in the way CGM reported the 
geometric sense of an edge relative to a face and the geometric sense of a face relative to a 
solid.  These are basic queries that report whether the face is to the left or the right of the edge 
and whether the solid is on the same side as the (positive) normal vector to the face or the 
opposite side from the normal vector to the face.  Figure 6 shows one example of the 
improper mesh of a cylinder that could result from this problem in CGM. 

 
Figure	  6.	  Invalid	  cylindrical	  pincell	  mesh	  due	  to	  geometry	  representation	  problem	  in	  CGM.	  

\ 
             The issue of geometric sense is an important one, but can be confusing because there 
are a variety of ways to think about it.  We resolved the issue for the most common use cases 
of CGM.  Now the same code that once produced the mesh in the Figure 6 produces the mesh 
shown in Figure 7 when it is run with the CGM library built on the OpenCascade library. 

Although no specific instances have been identified yet, software developers suspect 
that there are some less common use cases where CGM build on top of OCC will report the 
geometric sense incorrectly.  Use cases that involve merging, imprinting, or virtual geometry 
are areas of concern, but the geometric sense reported in these use cases has not yet been 
thoroughly tested. 

We also continue to keep up to date with the ongoing development of OCC. There 
were several changes required as we updated CGM to work with more recently released 
versions of the OpenCascade library. 
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There are some challenges faced with CGM. There continue to be areas where CGM 
built on top of OCC does not have the same capability that CGM has when built on top of 
CUBIT. One of the areas recently discovered is the computation of offset curves. The CUBIT 
library and OCC library have some differences in the capability they provide, but there is also 
poor integration of OCC’s capability in the CGM software. Another challenge is that the 
relationship with the CUBIT library, obtaining newer version of CGM and CUBIT are 
becoming more difficult and thus the integration and new releases of CUBIT. Argonne’s 
CGM developers do not have proper documentation for the most recent releases and are left 
with trying to guess what arguments are supposed to pass into library methods that have 
changed. 

Some SIGMA software developers have been advocating for significant redesign of 
the iGeom interface to CGM.  There is also a desire to change CGM to allow having multiple 
instances of CGM within the same thread of the same application.  Test coverage is currently 
quite poor in CGM, and there continue to be memory management and other issues that are 
flagged by code analysis tools such as valgrind. 

 
Figure	  7.	  User	  specified	  digraph	  for	  creating	  reactor	  assembly	  mesh	  with	  boundary	  layers.	  

 

4 Open	  Source	  Triangle	  Surface	  Meshing	  

MeshKit uses CAMAL as the provider for most of its surface meshing capabilities. It 
has not had robust open-source implementations of surface meshing capabilities, and one of 
the aims of MeshKit software development this year was to integrate an open-source solution 
for triangle surface meshing. The triangle surface mesher might be used as a basis for 
quadrilateral surface meshing through combining triangles. 

4.1 GRUMMP	  

The project named Generation and Refinement of Unstructured, Mixed-element 
Meshes in Parallel [7](GRUMMP) seems like a good potential alternative for surface triangle 
meshing. The algorithmic approach is based on Delaunay refinement rather than the 
advancing front technique. One challenge to using GRUMMP is that the license is not yet 
completely open source. In a telephone conversation, Carl Ollivier-Gooch seemed forward to 
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open up the GRUMMP license so that GRUMMP could be used as an open-source surface 
triangle mesher, but at the moment the license is still not completely open source. 

GRUMMP was originally designed to use the iGeom interface and at one time 
interacted well with CGM. The release version that is currently provided, however, has not 
been updated to work with the most recent version of CGM. There was some work done on a 
nonpublic release of GRUMMP to update it to work with CGM 13.1. 

Future work could include further updating that version of GRUMMP to work with 
later releases of CGM and attempting to integrate GRUMMP into MeshKit. 

Another possible avenue for open-source surface triangle meshing would be to provide 
a new implementation of triangle surface meshing in MeshKit. One possible avenue would be 
to base that implementation on the advancing front algorithm that is used in NetGen. 

4.2 NetGen	  

The first effort on the open-source triangle surface meshing front was to implement 
the advancing front triangle surface meshing capability that the NetGen package offers. After 
making some modifications to the source code of release version 5.2 of NetGen, we were able 
to build a prototype capability in MeshKit that integrated NetGen’s triangle surface meshing 
capability. However, as discussed in the rest of this section, there were many issues with the 
integration of NetGen, and it seems that there would not be a satisfactory way to implement 
NetGen into MeshKit at this time using the interface provided by NetGen. The issues with 
integrating NetGen include the following. 

• NetGen could not be integrated successfully without modifications to the source code 
by Argonne. 

• NetGen needed to read the geometry from file and could not communicate directly 
with CGM’s geometry model that was already in memory. 

• NetGen required control over meshing the edges of the surfaces it would mesh. 

• NetGen did not provide an interface for specifying a subset of the surfaces to mesh. It 
always meshed all surfaces of the geometry read from file. 

• CGM does not provide a way to save to file a subset of its geometric surfaces and does 
not provide a means to spin off a second instance, which might otherwise be used to 
contain copies of a subset of the geometry from the primary instance of CGM and thus 
work around saving a subset of its geometric surfaces. 

The face that NetGen source code required modification by Argonne does not make it 
impossible to integrate NetGen, but it would require Argonne to distribute its own modified 
version of NetGen, which is not desirable. 
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Since NetGen had to read the geometry from file, it would not have been efficient to 
use NetGen. Every time NetGen was required to mesh a surface, that surface would have to 
be written to disk by MeshKit and read from disk by NetGen. Writing to disk is often rather 
time-consuming and is makes things more complicated in a high-performance computing 
setting. It does not seem like a good solution when communication at the geometry layer 
should be possible. 

It was not possible to add vertices along edges when communicating with NetGen for 
NetGen’s OCC geometry triangle surface meshing. This meant that NetGen needed to mesh 
its own edges. This was a problem for multiple reasons. One is that MeshKit had less control 
over how the edges were meshed. Another is that MeshKit could not integrate NetGen 
naturally into its graph-based paradigm, which separates the edge meshing from the surface 
meshing and allows the user to select any desired algorithm for meshing the edges. 

Since the OCC triangle meshing capability of NetGen always meshed all of the edges 
and surfaces of the geometry it read, the only way to get NetGen to mesh a subset of the faces 
of the full geometric model was to provide a geometry file that contained only a portion of the 
full geometric model. Although it would be possible to implement this capability in CGM, 
CGM – and in particular the iGeom interface to CGM that is the only interface to CGM used 
by MeshKit – does not currently provide a way to export a geometry file that contains only a 
portion of the full geometry model. 

The prototype implementation of NetGen surface meshing provided a way to mesh all 
edges and all surfaces of a geometric model with NetGen, but it seemed that it would require 
a significant amount of effort and modification to the iGeom interface, which is supposed to 
be an interface shared by multiple software vendors, to get to the point where MeshKit could 
mesh only a subset of the surfaces of a geometric model. At that point, the solution would still 
have been less than desirable for the other reasons discussed here, so further work on 
integrating NetGen was suspended. 

5 Facet-‐Based	  Mesh	  Reader	  

When built with iGeom support, MeshKit now has the ability to create surface meshes 
using the graphics faceting of iGeom's underlying CAD engine. The ability to generate such 
meshes in MOAB has existed for some time, but the addition of this capability in MeshKit 
allows one to couple these surface meshes to the underlying geometry entities via MeshKit's 
mapping of the two via ModelEnts. This allows for creation and surface meshing of geometry 
in one package. Another advantage of this meshing operation is the possibility of a fully open 
source workflow in MeshKit algorithms for surface meshing and analysis if building iGeom 
using OCC, for example. 
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Figure	  8.	  Right:	  Car	  crankshaft	  in	  CUBIT.	  Left:	  Surface	  mesh	  of	  the	  crankshaft	  produced	  using	  

MeshKit.	  These	  two	  representations	  can	  now	  be	  linked	  directly	  using	  the	  new	  
FacetBasedMeshReader.	  

6 Multi-‐Sweeper	  

A multi-sweeper consists of several parts, that is, source surface mesh generation, 
target surface mesh generation, linking surface mesh generation (by submapping) and interior 
node interpolation inside volumes. A brief overview of the algorithms with some results are 
given in this section, very detailed results and algorithms are given in a PhD thesis document 
[8] 

6.1 Submapping	  

Submapping is a meshing tool for generating structured meshes on non 4-sided 
surfaces and non 6-sided volumes. An important part of submapping is to assign corners in 
the map to vertices bounding surfaces or edges bounding volumes. TFI mapping MeshOp in 
MeshKit has been implemented in MeshKit for this purpose. 

6.1.1 Optimal	  Corner	  Assignment	  

Submapped surfaces and volume require that corner or edge types bounding a surface 
or volume sum to four or six, respectively. Templates are used to identify surface submapped 
corners for a variety of common feature types, and an optimization approach is used to 
guarantee satisfaction of the submapping constraints (sum = 4 - 4g) for submapped surfaces (g 
is the number of holes). This approach not only works well in the presence of features, but can 
drastically reduce the user interaction required to set up and mesh models with many 
features.Vertex type adjustment based on LP.  

For the example below, users specify the mesh element size and the algorithm will 
classify vertices automatically. If there is a multi-connected geometry, it should be virtually 
decomposed or a path connecting the outmost boundary and interior boundaries should be 
computed so that the consistent edge parameterization between the outmost boundary and 
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internal holes can be generated. Note that all the bounding surfaces in all the examples shown 
below are meshed with structured quadrilateral meshes by the TFI mapping MeshOp. 

 
Figure	  9.	  Structured	  grid	  generation	  of	  a	  surface	  with	  a	  three	  quarters	  of	  circle	  feature	  by	  

submapping	  through	  templates:	  (a)corner	  assignment	  by	  CUBIT	  13.2;	  (b)structured	  grid	  for	  (a);	  
(c)corner	  assignment	  based	  on	  templates	  in	  this	  paper;	  (d)structured	  grid	  for	  (c)	  

 
Figure	  10.	  Mesh	  quality	  histogram:	  (a)mesh	  quality	  histogram	  for	  Figure	  1.7(b);	  (b)mesh	  quality	  

histogram	  for	  Figure	  1.7(d)	  

The first example in Figure 9 shows a surface with a three-quarters round feature, 
which makes it difficult to generate a valid corner assignment for submapping. CUBIT 13.2 
assigns corners for surface vertices as Figure 9(a) and the resulting structured quadrilateral 
mesh is shown in Figure 9(b). From Figure 9(b) and Figure 10(a), poor mesh quality is 
produced by submapping due to the lack of an optimal corner assignment. By applying 
templates described in this paper, two new vertices are virtually inserted and surface vertices 
are classified as Figure 1.7(c). The corresponding structured quadrilateral mesh is shown in 
Figure 9(d) with good mesh quality, which is illustrated in Figure 10(b). 

6.2 Many-‐to-‐many	  Sweeper	  

The 1-1 sweeping is a special case of multi-sweeping which includes M-1 and M-N 
sweeping. Unlike 1-1 sweeping where the source and target surface has the same topology 
and they are directly connected by the linking surfaces, M-N sweeping is characterized by M 
sources and N targets, which generally have different topologies. The key problem during 
multi-sweeping is to resolve curves on the source and target surfaces, combined with the 
resulting source and target surface patches needing to match: more specifically, multi-
sweeping requires to solve which source surface or area of a specific source surface will be 
swept onto a specific target surface or a specific area of a target surface. This is due to the 
inherent characteristics that each mesh face element on the source surfaces should match only 
one mesh face element on the target surfaces. This subsequently results in that the interval 
assignment problem for edges on the source and target surfaces should be solved. 
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6.2.1 Edge	  Patch	  Imprinting	  

A new edge patch imprinting algorithm for multi-sweeping problems has been 
developed in this work: inputs are the source surfaces, target surfaces and linking surfaces 
with their parametric spaces; outputs are a list of source and target surface patches with each s 
surface patch matching an exactly t surface patch. After imprinting, curves and vertices on the 
target surfaces with source surfaces are resolved by embedding them on the source surface 
meshes and vice versa. 

6.2.2 Interior	  Edge	  Patch	  Placement	  

Once the bounding edge patches have already propagated to the next sweeping level 
along the linking surfaces, their enclosed interior edge patches must be propagated to next 
sweeping level so that curves on the s/t surfaces can be resolved. As matter of fact, those 
edges on the source and target surfaces must be reasonably placed and imprinted on surfaces 
so that there are no distortions or degenerated elements when sweeping the surface meshes 
through volumes.  Detailed algorithm and theory can be found in [8] 

6.3 Integration	  of	  Sweeping	  Pieces	  

Integration of Jaal quadmesher with details of our multi-sweeping algorithm where 
there are five main steps for swept volume meshes will be incorporated into MeshKit. The 
sweeping method in this work starts with an input volume without any mesh but with the 
identified source and target surfaces. Integration of the final version multi-sweeper with Jaal 
and the rest of MeshKit is currently in-progress. 

6.4 Examples	  

The numerical simulations such as heat transfer (predictions of peak subassembly 
temperature) and CFD are needed to assess a designed reactor. One of the typical example is 
the grid spacer reactor model shown in Figure 11(a) and Figure 11(b). Generally, the swept 
volume meshes are preferred for the flow simulation. 

The only other feasible method for generating the swept volume meshes for the grid 
spacer model is to partition the geometry until all the decomposed pieces are 1-1 sweepable. 
However, there are some shortcomings for the volume decomposition method: generally it is 
difficult to generate the internal surfaces which are used to guide the volume decomposition; 
meanwhile, interior nodes are placed separately (logically or physically) in each decomposed 
subvolumes and poor mesh quality may be produced inside volume. Those disadvantages 
become very obvious when there is a model with complicated internal structures such as the 
grid spacer model in Figure 11(b) where the blind twisted blade-like holes are located inside 
the geometry. A closer look can be taken at Figure 11(c) and Figure 11(d). Therefore, it 
requires a lot of experiences and takes a lot of efforts to decompose the grid spacer model in a 
reasonable way so that the acceptable mesh quality of the swept volume meshes can be 
achieved. 
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Figure	  11.	  All-‐hexahedral	  mesh	  generation	  for	  grid	  spacer	  reactor	  model:	  (a)	  assembly	  geometry	  
model;	  (b)	  local	  zoom-‐in	  view	  of	  assembly	  model;	  (c)single	  part	  of	  grid	  spacer	  reactor	  model;	  
(d)top	  view	  for	  (c);	  (e)source	  surface	  meshes	  for	  (c);	  (f)all-‐hex	  meshes	  for	  (c);	  (g)target	  surface	  
meshes	  for	  (c);	  (h)cut-‐view	  of	  interior	  node	  distribution	  inside	  the	  grid	  spacer	  model;	  (i)another	  

cut-‐view	  of	  interior	  node	  distribution	  

The grid spacer model shown in Figure 11(c) is a M-1 sweeping problem where the 
most difficult part is to locate interior nodes inside the swept volume meshes constrained the 
bounding surfaces. Instead of using the volume decomposition, our approach uses the edge 
patch imprinting and generate the target surface meshes as Figure 11(g) which are mapped 
from the source surface meshes in Figure 11(e). The interior nodes are placed by mapping 
those interior nodes from the idealized model to the physical model where interior nodes in 
the idealized model are simply placed based on affine transformation. The resulting interior 
node distribution is shown in Figure 11(h) and Figure 11(i). 

7 Conclusions	  	  

MeshKit v1.3 was released with new algorithms for uniform mesh refinement with 
CoreGen. Numerous enhancements and fixes to RGG algorithms and graph-based design 
were made to MeshKit. Significant effort was directed towards maintain and upgrading the 
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CGM version. Development of AssyMesher, which requires an open-source triangle meshing 
algorithm in progress. At present, a prototype of AssyMesher is available that work with 
CAMAL (closed source) triangle meshing library.  

Collaboration with Kitware continues as we complement each other on development 
of GUI and algorithms in MeshKit and SIGMA tools. Successful development tie-up has led 
to development as other useful GUI products such as CMB for CGM and CMB for general 
algorithms in MeshKit. The capability to load MOAB meshes into Paraview tool by Kitware 
was also enhanced, along with CMake-based build for all SIGMA libraries.   
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